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1 Introduction

How do you rank a set of objects that are interconnected with each other?

When you look something up in Google, an algorithm decides which webpages to display on top
of others. You might have realized that most of the time, you click on the first five webpages
— rarely do you ever scroll down at all. This is all thanks to a statistical algorithm called
PageRank that Google uses to rank webpages.

PageRank ranks webpages by scoring each webpage based on how likely a random web surfer is
to arrive there, either by clicking on hyperlinks between webpages or by the occasional direct
URL search. For a webpage to have a higher PageRank score, either there are a lot of hyperlinks
from other webpages directing to it, or the webpages directing to it are highly ranked themselves.

Mathematically speaking, a matrix G is used to encode all the information about the hyperlinks
between webpages, as well as how likely a random web surfer will type in URLs to certain
webpages. Then, we represent the state of a random web surfer as a discrete probability
distribution vector v, whose ith is the probability that the random web surfer ends up on
webpage i.

Multiplying v with G will return the new discrete probability distribution after the web surfer
clicks on hyperlinks or manually types in URLs. Finally, after multiplying by G an arbitrary
amount of times, we hope to find a steady state probability vector that represents an “average”
long-term behavior of the random web-surfer. If such a steady state vector exists, the steady
state probability for being on each webpage corresponds with that webpage’s PageRank score.

In this paper, we first introduce some basic theory about the matrix G, which turns out to be
a special case of the more general class of stochastic, Markov-chain transition matrices. We
then describe the PageRank algorithm in more mathematical detail, explaining how to encode
arbitrary networks of webpages and random web surfer behavior in the matrix G. Next, we will
give an example ranking for a hypothetical network of webpages. Finally, we will also explain
how to extend this method to other types of rankings, namely sports rankings.
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2 Background and Theory

First, we state some useful definitions:

Definition. A stochastic or probability vector v ∈ Rn is a real vector with all nonnegative
elements that sum up to 1.

Definition. A row stochastic matrix is a square matrix where each row is a probability vector.

Now, we state and prove a fundamental theorem:

Theorem 2.1. If A is an m× n matrix and B an n× p matrix such that every row of A and
B is a probability vector, then every row of the product AB is also a probability vector.

Proof. Let C = AB be the m× p product. Since each row of A and B is a probability vector,
all elements of A and B are nonnegative. Then, for all 1 ≤ i ≤ m and 1 ≤ j ≤ p,

cij =
n∑

k=1

aikbkj ≥ 0

Since the product and sum of nonnegative numbers is still nonnegative.

It remains to check that each row of C sums up to 1. For each row 1 ≤ i ≤ m,

p∑
j=1

cij =

p∑
j=1

(
n∑

k=1

aikbkj

)
=

n∑
k=1

 p∑
j=1

aikbkj

 =

n∑
k=1

aik

 p∑
j=1

bkj

 =

n∑
k=1

aik(1) = 1

Corollary 2.1.1. The product of two same dimension, row stochastic matrices is row stochastic.
By induction, the product of any number of same dimension, row stochastic matrices is row
stochastic.

Later, we will use row stochastic matrices to describe transitions between states. In particular,
given a row stochastic matrix G, each element gij represents the probability of transitioning to
state j, given we start on state i. In probability notation, we have the conditional probability

gij = P (j′ | i) = P (j′ ∩ i)

P (i)

where j′ denotes being at state j after one transition.

Then, for some initial probability row vector v where each element vi = P (i) is the probability
of starting at state i, performing the left multiplication1 vG gives a new probability vector
(Theorem 2.1), whose jth element is∑

i

vigij =
∑
i

P (i)P (j′ | i) =
∑
i

P (i)
P (j′ ∩ i)

P (i)
=
∑
i

P (j′ ∩ i) = P (j′)

The summation gives the total probability of starting at any state with probability described
by v and then transitioning to state j, which equals the probability of being at state j after one
transition.
1Left multiplication of row stochastic matrices by probability vectors is used by convention in this field. In our
computations later, we will switch back to the right multiplication we are familiar with.
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If we multiply again by G, we get another probability vector representing the probabilities of
being at each state after two transitions. In general, the jth element of vGk is the probability
of being at state j after k transitions, starting at probability vj . Here, G

k can be interpreted as
the “k-step transition matrix”. In the following section, we will discuss properties of the matrix
Gk and the vector vGk as k → ∞.

Steady State Behavior

As discussed in the introduction, given some stochastic matrix G representing the hyperlink
and URL probabilities, we want to find a steady state vector, defined below:

Definition. A steady state vector for an n × n row stochastic matrix G is a probability row
vector w ∈ Rn such that for any initial probability row vector v ∈ Rn,

lim
k→∞

vGk = w

We will now prove the existence of the limit and the properties of the steady state vector w.

Theorem 2.2. If G is an n× n row stochastic matrix with no zero elements, then the limit

lim
k→∞

Gk = W

exists, where W is a matrix with all rows equal to each other, and all elements positive.

Proof. Let G be an n×n row stochastic matrix with all elements greater than 0. If n = 1, then
G is a 1× 1 matrix, and since G is stochastic, it must be that G = 1. Then

lim
k→∞

Gk = lim
k→∞

1k = 1 = W.

Otherwise, suppose n ≥ 2. Let k ≥ 1 be an arbitrary integer.

Let y ∈ Rn be an arbitrary column vector with each element between 0 and 1, inclusive.
Additionally, let mk be the minimum element and Mk the maximum element of Gky. We will
prove that as k → ∞, Gky → a column vector with equal elements to eventually show that
Gk → W where W has all rows equal to each other (see footnote2).

We first want to show that the sequences mk and Mk converge. Since G is row stochastic, Gk

is also row stochastic by Corollary 2.1.1, so all elements of G are between 0 and 1, inclusive.
Also, since each element of y is also between 0 and 1, inclusive, we know by definition of matrix
multiplication that Gky is a column vector with each element between 0 and 1, inclusive. So,

0 ≤ mk,Mk ≤ 1 for all k ≥ 1

We now show that mk is monotonically increasing and Mk is monotonically decreasing. Let

Gk−1y =


y1
y2
...
yn

 so that Gky = G(Gk−1y) =


g11 g12 · · · g1n
g21 g22 · · · g2n
...

...
. . .

...
gn1 gn2 · · · gnn



y1
y2
...
yn


2We use right multiplication only in the body of this proof. At the end, we show how right multiplication by y
can be used to prove facts about left multiplication.

3



Suppose the minimum element of Gk−1y is yi = mk−1, and suppose row f of G multiplies with
Gk−1y to produce the new minimum element mk of Gky. In other words,

mk = f ·Gk−1y = f1y1 + f2y2 + · · ·+ fiyi + · · ·+ fnyn

Since G is row stochastic we can write

fi = 1− f1 − · · · − fi−1 − fi+1 − · · · fn

Substituting this back in, we get

mk = f1y1 + · · ·+
(
1− f1 − · · · − fi−1 − fi+1 − · · · fn

)
yi + · · ·+ fnyn

= f1y1 + · · ·+
(
yi − f1yi − · · · − fi−1yi − fi+1yi − · · · fnyi

)
+ · · ·+ fnyn

= yi + f1(y1 − yi) + · · ·+ fi−1(yi−1 − yi) + fi+1(yi+1 − yi) + · · ·+ fn(yn − yi)

Now, for any 1 ≤ r ≤ n with r ̸= i, we know fr(yr − yi) ≥ 0 because fr > 0 as G was given to
have no zero elements and yr ≥ yi as yi is the minimum element. Therefore

mk = yi + f1(y1 − yi) + · · ·+ fn(yn − yi) ≥ yi = mk−1

and so the sequence mk is monotonically increasing.

By the same argument, if we assumed yj = Mk−1 and h to be the row that multiplies with
Gk−1y to produce the new Mk, then we would have gotten

Mk = yj + h1(y1 − yj) + · · ·+ hj−1(yj−1 − yj) + hj+1(yj+1 − yj) + · · ·+ hn(yn − yj)

Similarly, for any 1 ≤ r ≤ n with r ̸= j, all hr(yr − yj) ≤ 0 because hr > 0 by assumption and
yr ≤ yj as yj is the maximum element. So

Mk = yj + h1(y1 − yj) + · · ·+ hn(yn − yj) ≤ yj = Mk−1

which proves the sequence Mk is monotonically decreasing.

Since both sequences mk and Mk are monotonic and bounded, they both converge to a limit.

Given that the limits exist, let mk → m and Mk → M , so that the limit limk→∞(Mk − mk)
can be split up to equal M − m. We can now prove that m = M by showing M − m =
lim
k→∞

(Mk −mk) = 0. We do so by bounding

0 ≤ Mk −mk ≤ Mk,max −mk,min

where Mk,max is an upper bound for Mk and mk,min is a lower bound for mk.

Recall that yi = mk−1 and yj = Mk−1 were the respective minimum and maximum elements of
Gk−1y = (y1, y2, . . . , yn)

T . Also recall that f is the row of G such that

mk = f ·Gk−1y = f1y1 + · · ·+ fnyn.

Since all elements of f are strictly positive, mk attains a lower bound when all elements of y
are mk−1 except yi = Mk−1 (as defined earlier):

mk,min = f1mk−1 + · · ·+ fjMk−1 + · · ·+ fnmk−1 = fjMk−1 +mk−1

n∑
i=1,i ̸=j

fi

= fjMk−1 + (1− fj)mk−1 = mk−1 + (Mk−1 −mk−1)fj

4



where we use the fact that the elements of f sum up to 1. Now, let d > 0 be the minimum
element of G. If fj is minimized (that is, fj = d), then the lower bound becomes

mk,min = mk−1 + (Mk−1 −mk−1)d

Similarly, we can show that Mk is bounded above by

Mk,max = Mk−1 + (mk−1 −Mk−1)d

Then,3

Mk −mk ≤ Mk,max −mk,min = (Mk−1 −mk−1) + 2(mk−1 −Mk−1)d

= (1− 2d)(Mk−1 −mk−1)

Inductively, we see that
0 ≤ Mk −mk ≤ (1− 2d)k(M0 −m0)

where 0 ≤ Mk −mk by definition of maximum and minimum. Finally, since the n × n matrix
G is stochastic with n ≥ 2, the minimum element d > 0 is bounded by 0 < d ≤ 1

2 . Multiplying
by -2 and then adding 1 on all sides,

1 > 1− 2d ≥ 0

so as k → ∞, (1− 2d)k → 0. Thus,

0 ≤ lim
k→∞

(Mk −mk) ≤ lim
k→∞

(1− 2d)k(M0 −m0) = 0

Implying
0 = lim

k→∞
(Mk −mk) = M −m

which proves M = m. But every element of Gky is bounded between mk and Mk, so as k gets
arbitrarily large, all elements of Gky approach the same number u = M = m. In other words,
for all probability vectors y ∈ Rn,

lim
k→∞

Gky = u

with u an n-column vector with each element being u.

Now, for each 1 ≤ i ≤ n, pick y with the ith component equal to 1 and all other components
equal to 0. By definition of matrix multiplication, we can see that u = lim

k→∞
Gky which equals

the ith column of lim
k→∞

Gk. So all elements of the ith column of lim
k→∞

Gk are equal to u.

In fact, since m1 is the minimum value of Gy which equals the ith column of G, we must
have m1 > 0 be definition of G. Then, since we previously showed that mk was monotonically
increasing, we know 0 < m1 ≤ m2 ≤ · · · ≤ lim

k→∞
mk = u, so u > 0. So all elements of the ith

column of lim
k→∞

Gk are positive.

Therefore, all columns of limk→∞Gk exist, and have equal elements which are all strictly posi-
tive. We can write this as

lim
k→∞

Gk = W

with W a matrix with all rows equal to each other, and all elements positive.
3See the remark after this proof regarding the inequality.
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Remark. The above proof for Theorem 2.2 showed lim
k→∞

Gk = W by proving the inequality

Mk −mk ≤ (1− 2d)(Mk−1 −mk−1)

where we showed 0 ≤ 1−2d < 1. But this inequality looks very similar to a contraction mapping!

If we rewrote our proof and based it on right multiplication by G, then by deriving a similar
inequality, we could have invoked the Banach Fixed-Point Theorem to show that Gk converges
to a fixed point W such that WG = W . This is actually the topic of the next Theorem 2.3,
although we do not use the Banach Fixed-Point Theorem.

With Theorem 2.2, we can now show that the steady state vector is a fixed point of G.

Theorem 2.3. Let G be a row stochastic matrix with no zero elements. Then lim
k→∞

Gk = W ,

where all rows of W are equal to w. Additionally, w is the unique probability vector satisfying

wG = w.

In other words, if we find a probability left eigenvector w of G corresponding with eigenvalue 1,
then limk→∞Gk = W where W is a square matrix whose rows are all equal to w.

Proof. Let G be a n × n row stochastic matrix with no zero elements. Then by Theorem 2.2,
we know limk→∞Gk = W , with W a square matrix with all rows equal to w ∈ Rn.

We can say that

lim
k→∞

Gk+1 =

(
lim
k→∞

Gk

)
G = WG

but we also know that
lim
k→∞

Gk+1 = lim
k→∞

Gk = W

so we can conclude that W = WG. But all rows of W are equal to w, so by definition of matrix
multiplication, we see that w = wG.

To prove the uniqueness of w, let v ∈ Rn be any probability row vector satisfying vG = v.
Multiplying by G on both sides, we get vG2 = vG = v, and by induction, we can see that
vGk = v for any integer k ≥ 1. Taking limits, we have

v = lim
k→∞

v = lim
k→∞

vGk = v lim
k→∞

Gk = vW

Now, we note that by Corollary 2.1.1, W is a row stochastic matrix. Let aij be the elements of
W , and let wi be the elements of w. Then, for any 1 ≤ i ≤ n, the ith component of v is

vi =

n∑
j=1

vjaji Since v = vW

=
n∑

j=1

vjwi Since all rows of W are the same

= wi

n∑
j=1

vj = wi(1) = wi Since v is a probability vector

So v = w.

6



We are now ready for the final theorem that equates the steady state vector with the probability
left eigenvector of G corresponding to eigenvalue 1.

Theorem 2.4. Let G be a row stochastic matrix with no zero elements. If w is a probability
vector satisfying wG = w, then for any initial probability vector v,

lim
k→∞

vGk = w

Proof. Let G be an n × n row stochastic matrix, and v ∈ Rn any probability row vector. Let
w ∈ Rn be a probability row vector satisfying wG = w. By Theorem 2.3, w is unique, and

lim
k→∞

Gk = W

with W a matrix with all rows equal to w. Multiplying on the left by v, we have

v lim
k→∞

Gk = lim
k→∞

vGk = vW

Now, let wi be the elements of w, and ai be the elements of vW . Then for each 1 ≤ i ≤ n,

ai =
n∑

j=1

vjwi Since all rows of W equal w

= wi

n∑
j=1

vj = wi(1) = wi Since v is a probability vector

Thus, vW = w, and we have
lim
k→∞

vGk = w

We have completed all the necessary proofs and are now able to treat any problem regarding
finding the steady state vector of a stochastic matrix as an eigenvector problem. Indeed, Theo-
rem 2.3 implies that for any row stochastic matrix G with no zero elements, there exists a unique
probability row vector w such that wG = w. In other words, there is guaranteed to exist a
unique left probability eigenvector corresponding with eigenvalue 1. Then by Theorem 2.4, we
know w is exactly the steady state probability vector of G.

But how do we compute the probability row w? Since wG = w, we can take the transpose of
both sides to get

(wG)T = wT = GTwT

Clearly, we can find wT by finding the column eigenvector of GT corresponding with eigenvalue
1, and normalizing the resulting vector to be a probability vector. Taking the transpose will
give us the desired steady state vector w.

In the following section, we will explain how Google’s PageRank algorithm uses this exact
problem solving strategy to rank webpages.
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3 Google’s PageRank Algorithm

We now describe how to implement PageRank with an example. Assume there are only four
webpages ω1, ω2, ω3, ω4, with hyperlinks between them represented by the following graph:

ω1

ω2 ω3

ω4

This graph can be represented by a hyperlink matrix H = (hij), where

hij =

{
1 there is a hyperlink from ωi to ωj

0 otherwise

In our example, we get the matrix

H =


0 1 1 1
1 0 1 1
0 0 0 1
0 1 0 0


Now, we seek to construct a transition matrix representing where a random web surfer will
go for any webpage that they start on. We first only consider hyperlink transitions between
webpages, given by H.

If a web surfer begins on webpage ωi, we assume they are equally likely to click on any out-
going hyperlink from ωi. To do so, we will convert the ith row of H into a probability vector,
representing where the web surfer is likely to go next upon arriving on webpage ωi.

Since the web surfer will click on some hyperlink, the probabilities of each row must add up to
1. Thus, we will normalize each row by dividing each row by the sum of the elements in each
row. For example, row 1 has elements

[
0 1 1 1

]
, so we divide the row by 1 + 1 + 1 = 3 to

get
[
0 1

3
1
3

1
3

]
. The new row can be interpreted as “a random web surfer at ω1 about to

click on an outgoing hyperlink has a 1/3 probability of going to either ω2, ω3, or ω4”.

Repeating for all rows, we get the row stochastic matrix S of probability vectors:

S =


0 1

3
1
3

1
3

1
3 0 1

3
1
3

0 0 0 1
0 1 0 0


S models how a random web surfer would travel between webpages by only clicking on hy-
perlinks, with an equal likelihood of clicking on each hyperlink. However, to account for the
ability of a random web surfer to manually type in URLs to navigate to different webpages, we
introduce the personalization vector p.

Definition. The personalization vector p is a probability vector representing how likely each
webpage is to be visited by typing in URLs manually, instead of via direct hyperlinks. p is
constant and independent of which webpage the random web surfer is currently on.
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The personalization vector that Google currently uses is unknown, so for simplicity, we will use
p =

[
1
n . . . 1

n

]
where n is the number of webpages. With this definition of p, a random web

surfer is equally likely to navigate to any webpage by typing in URLs manually.

If we just consider only the personalization vector, we get another row stochastic matrix

P =


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 =


1
1
1
1

 [14 1
4

1
4

1
4

]
= zp

where z is a column vector of ones. We note that each row is identical because p was defined to
be a probability vector independent of which webpage the random web surfer is currently on.

Finally, we can combine S and P as a weighted sum to get the Google matrix G:

G = αS + (1− α)P = αS + (1− α)zp

where α is the dampening factor, defined below.

Definition. The dampening factor 0 ≤ α ≤ 1 weights the likelihood of navigating webpages
via hyperlinks against navigating webpages via typing in URLs manually. A higher value of α
indicates a greater reliance on hyperlinks to navigate webpages.

Since S and P are both row stochastic matrices, and 0 ≤ α ≤ 1, it is clear that the final
Google matrix G is also row stochastic. To be clear, each element gij completely describes the
probability of a random web surfer going from webpage ωi to webpage ωj by any means.

In most studies, the dampening factor was set between 0.85 and 0.99. In our example, we will
use α = 0.9. We then have

G =
9

10


0 1

3
1
3

1
3

1
3 0 1

3
1
3

0 0 0 1
0 1 0 0

+
1

10


1
1
1
1

 [14 1
4

1
4

1
4

]
=

1

40


1 13 13 13
13 1 13 13
1 1 1 37
1 37 1 1


Our goal is to rank each page by how likely a random web surfer will arrive at them. This is
described by the steady state vector w of the matrix, which we proved in Theorem 2.44 to be
the long term probability distribution of a web surfer arriving at particular webpages, starting
with any initial probability distribution. The ith element of w, the likelihood a random web
surfer ends up at webpage ωi in the long term, corresponds to the PageRank score for ωi.

As discussed at the end of previous section, we can find wT as the eigenvector corresponding
with eigenvalue 1 for the matrix GT . Since we know w exists, we can skip finding eigenvalues
and directly work with the matrix GT − I:

GT − I =
1

40


1 13 1 1
13 1 1 37
13 13 1 1
13 13 37 1

−


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =
1

40


−39 13 1 1
13 −39 1 37
13 13 −39 1
13 13 37 −39


4We can apply Theorem 2.4 because every element of G is strictly positive, which is guaranteed by the zp term
and our definition of p as having all positive elements.
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Now we perform row reduction to find the kernel of GT − I:

1

40


−39 13 1 1
13 −39 1 37
13 13 −39 1
13 13 37 −39

 −→


−39 13 1 1
13 −39 1 37
13 13 −39 1
13 13 37 −39

 −→


0 −104 4 112
13 −39 1 37
0 52 −40 −36
0 0 76 −40



−→


13 −39 1 37
0 −104 4 112
0 0 −38 20
0 0 76 −40

 −→


13 −39 1 37
0 −104 4 112
0 0 −38 20
0 0 0 0

 −→


13 −39 1 37
0 −104 4 112
0 0 1 −10

19
0 0 0 0



−→


13 −39 0 713

19

0 −104 0 2168
19

0 0 1 −10
19

0 0 0 0

 −→


13 0 0 −800

152

0 −104 0 2168
19

0 0 1 −10
19

0 0 0 0

 −→


1 0 0 − 800

1976

0 1 0 −2168
1976

0 0 1 −10
19

0 0 0 0


From this we get the system of equations

x1 −
800

1976
x4 = 0, x2 −

2168

1976
x4 = 0, x3 −

10

19
x4 = 0

So the kernel is generated by the vector
[
800
1976

2168
1976

10
19 1

]T ≈
[
0.405 1.097 0.526 1

]T
.

We can find w by taking the transpose and normalizing this vector to a probability vector, but
since that does not change the relative PageRank scores, we can skip finding w and directly
order the elements from greatest to least to get the final webpage ranking: ω2, ω4, ω3, ω1 (from
highest to lowest ranked).

Dangling Nodes

A dangling node is a node that does not map to another node. An example of is given in the
following webpage diagram:

ω1

ω2 ω3

ω4

Here, ω4 is a dangling node as it does not map to any other node in the diagram. This would
create a row of all zeroes in our hyperlink matrix, which would make it not row stochastic and
thus cause the Google matrix to not be row stochastic. If the Google matrix is not stochastic,
there is no guaranteed steady state probability vector.

To resolve this, we convert every row of all zeroes in H (which are the dangling node rows) to the
personalization row vector p in S, and then evaluate G normally. Since G = αS + (1 − α)zp,
dangling nodes are maintained as p rows in G. This correctly models a random web surfer
relying only on typing in URLs to leave a webpage that has no outgoing hyperlinks. In this
example, we have

H =


0 1 1 1
1 0 1 1
0 0 0 1
0 0 0 0

 S =


0 1

3
1
3

1
3

1
3 0 1

3
1
3

0 0 0 1
1
4

1
4

1
4

1
4


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Then, using α = 0.9 and p =
[
1
n · · · 1

n

]
again, we get

G =
9

10


0 1

3
1
3

1
3

1
3 0 1

3
1
3

0 0 0 1
1
4

1
4

1
4

1
4

+
1

10


1
1
1
1

 [14 1
4

1
4

1
4

]
=

1

40


1 13 13 13
13 1 13 13
1 1 1 37
10 10 10 10


We can now proceed to find the steady state vector. As in the previous example, we will find
the steady state vector by finding the kernel of GT − I:

GT−I =
1

40


1 13 13 13
13 1 13 13
1 1 1 37
10 10 10 10


T

−I =
1

40


1 13 1 10
13 1 1 10
13 13 1 10
13 13 37 10

−I =
1

40


−39 13 1 10
13 −39 1 10
13 13 −39 10
13 13 37 −30


Doing matrix reduction on GT − I (by first eliminating the scalar 1

40), we get
−39 13 1 10
13 −39 1 10
13 13 −39 10
13 13 37 −30

 −→


0 −104 4 40
13 −39 1 10
0 52 −40 0
0 0 76 −40

 −→


13 −39 1 10
0 −104 4 40
0 52 −40 0
0 0 76 −40



−→


13 −39 1 10
0 −104 4 40
0 0 −38 20
0 0 76 −40

 −→


13 −39 1 10
0 −104 4 40
0 0 −38 20
0 0 0 0

 −→


13 −39 1 10
0 −104 4 40
0 0 1 −10

19
0 0 0 0



−→


13 −39 0 200

19

0 −104 0 800
19

0 0 1 −10
19

0 0 0 0

 −→


13 0 0 −800

152

0 −104 0 800
19

0 0 1 −10
19

0 0 0 0

 −→


1 0 0 − 800

1976

0 1 0 − 800
1976

0 0 1 −10
19

0 0 0 0


From this we get the system of equations

x1 −
800

1976
x4 = 0, x2 −

800

1976
x4 = 0, x3 −

10

19
x4 = 0

So the kernel is generated by the vector
[
800
1976

800
1976

10
19 1

]T ≈
[
0.405 0.405 0.526 1

]T
.

Ordering the elements from greatest to least, we get the following ranking: ω4 in first, ω3 in
second, and ω1 and ω2 tied for third.
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4 Extensions

The ranking algorithm described previously can be extended to analyzing other networks. In
fact, we can generalize PageRank’s method by representing an arbitrary network as a matrix of
weighted connections.

An example of a use of this method is within sports. We can model each node as a team and
each connection as the difference in scores for one game played between two teams. These
connections will point from the losing team to the winning team. In contrast to the PageRank
algorithm described earlier, each connection is weighted by the score difference, which can each
be greater than 1. If two teams played multiple games against each other and one side won all
of them, then the score differences are added together. If the wins were split, then there would
be connections going both ways, each weighted with the sum of the score differences for all the
wins of one team against the other. This is called the GEM method (as introduced by Zack et
al.).

As an example, we will model the games played between the top 4 soccer teams in the German
Bundesliga. We have four nodes: B04 (Bayern Leverkusen), FCB (Bayern Munich), VfB (VfB
Stuttgart), and RBL (RB Leipzig).

In the 2023-2024 season, there were two games played between FCB - VfB with the scores 3 -
0 and 1 - 3. FCB won one game with a score difference of 3, while VfB won the other with a
score difference of 2. Repeating for all other games in the season, we get the following diagram:

B04

FCB VfB

RBL
2

3

2

3

3

4
1

This would correspond with the hyperlink matrix

H =


0 0 0 0
3 0 2 0
0 3 0 4
2 2 3 0


(outgoing connections from B04)

(outgoing connections from FCB)

(outgoing connections from VfB)

(outgoing connections from RBL)

Since B04 is a dangling node, we convert it to the personalization vector p =
[
1
4

1
4

1
4

1
4

]
in

our stochastic matrix S:

S =


1
4

1
4

1
4

1
4

3
5 0 2

5 0

0 3
7 0 4

7

2
7

2
7

3
7 0


Again, using α = 0.9, we get

G =
9

10


1
4

1
4

1
4

1
4

3
5 0 2

5 0

0 3
7 0 4

7
2
7

2
7

3
7 0

+
1

10


1
1
1
1

 [14 1
4

1
4

1
4

]
=


1
4

1
4

1
4

1
4

113
200

1
40

77
200

1
40

1
40

115
280

1
40

151
280

79
280

79
280

115
280

1
40


12



We can now find the steady state vector by finding of GT − I, as we have done before:

GT − I =


1
4

1
4

1
4

1
4

113
200

1
40

77
200

1
40

1
40

115
280

1
40

151
280

79
280

79
280

115
280

1
40


T

− I =


1
4

113
200

1
40

79
280

1
4

1
40

115
280

79
280

1
4

77
200

1
40

115
280

1
4

1
40

151
280

1
40

− I

=
1

1400


−1050 791 35 395
350 −1365 575 395
350 539 −1365 575
350 35 755 −1365


Eliminating the 1

1400 scalar and doing row reduction, we get
−1050 791 35 395
350 −1365 575 395
350 539 −1365 575
350 35 755 −1365

 −→


0 −3304 1760 1580

350 −1365 575 395
0 1904 −1940 180
0 1400 180 −1760



−→


350 −1365 575 395
0 −3304 1760 1580
0 1904 −1940 180
0 1400 180 −1760

 −→


350 −1365 575 395
0 −3304 1760 1580
0 0 −3058720

3304
3603040
3304

0 0 3058720
3304 −3603040

3304



−→


350 −1365 575 395
0 −3304 1760 1580
0 0 1 −3603040

3058720
0 0 0 0

 −→


350 −1365 0 2928520

2731

0 −3304 0 9976900
2731

0 0 1 −3603040
3058720

0 0 0 0



−→


350 0 0 −2386585

5462

0 −3304 0 9976900
2731

0 0 1 −3603040
3058720

0 0 0 0

 −→


1 0 0 −2386585

1911700

0 1 0 −9976900
9023224

0 0 1 −3603040
3058720

0 0 0 0


From this we get the system of equations

x1 −
2386585

1911700
x4 = 0, x2 −

9976900

9023224
x4 = 0, x3 −

3603040

3058720
x4 = 0

So the kernel is generated by the vector
[
2386585
1911700

9976900
9023224

3603040
3058720 1

]T
which is approximately

equal to
[
1.248 1.106 1.178 1

]T
. This gives us the final ranking: Bayern Leverkusen in

first, VfB Stuttgart in second, Bayern Munich in third, and then RB Leipzig in fourth. If we
alternatively ranked these four teams using the soccer scoring system of 0 points for a loss, 1
point for a draw, and 3 points for a win, we would get the same ranking. So the GEM method
clearly produces accurate ranking results in sports.
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5 Conclusion

PageRank is a powerful algorithm that has in part shaped our modern world due to the role it
plays in Google’s search engine. Underpinning it is simple linear algebra that ends up doing very
powerful things. By just finding an eigenvector of an easily computable matrix, we can ensure
that the most useful webpages are shown to readers first. We have seen that this method can
be used to rank webpages for every search on Google.com, but also for any arbitrary network,
such as sports tournaments. This is just one of the few examples where linear algebra is used
to model complex systems and describe its properties.

References

[1] Bundesliga: Matchday 34: Season 2023-2024. Bundesliga. https://www.bundesliga.com/
en/bundesliga/matchday/2023-2024.

[2] Grinstead, C., & Snell, L. (2023, August 4). Introductory Probability. Statistics LibreTexts.
https : / / stats . libretexts . org / Bookshelves / Probability _ Theory / Book % 3A _

Introductory_Probability_(Grinstead_and_Snell).

[3] Wikipedia contributors. (2024, May 15). PageRank. Wikipedia. https://en.wikipedia.
org/wiki/PageRank.

[4] Zack, L., Lamb, R., & Ball, S. (2013). An application of Google’s PageRank to NFL rankings.
Involve, 5(4), 463–471.

14


