
Fourier Epicycles
Yuchen Xin

Spring 2025

1 Introduction

In this paper, we will rigorously define the discrete Fourier transform, demonstrate how to invert it and
interpret the inversion as a chain of epicycles, quantify how good the epicycle “approximation” is, use
the epicycle representation to visualize various curve transformations (and in particular, demonstrate the
convolution theorem), and finally explain the groundbreaking fast Fourier transform algorithm.

2 The Discrete Fourier Transform

Given a sequence of N points {xn}N−1
n=0 that all belong in C, commonly referred to as an input “signal”, we

define the discrete Fourier transform (DFT) as

Xk :=
1

N

N−1∑
n=0

xne
−2πi k

N n for k ∈ Z, creating a new sequence {Xk}N−1
k=0 all in C (1)

followed by the inverse discrete Fourier transform (IDFT)

x̃n :=

N−1∑
k=0

Xke
2πi n

N k, where x̃n = xn as follows... (2)

Theorem 1 (Inversion). The IDFT of the DFT returns the original sequence.

Proof. We first note a useful orthogonality property: let α ∈ Z be an integer. Supposing α ̸≡ 0 (mod N),
we know α

N is not an integer so e2πi
α
N ̸= 1, so

N−1∑
k=0

e2πi
α
N k =

1− e2πi
α
N N

1− e2πi
α
N

=
1− e2πiα

1− e2πi
α
N

=
1− 1

1− e2πi
α
N

= 0

using the finite geometric sum formula, where the denominator is nonzero as shown above. If α ≡ 0 (mod N)
then α

N is an integer, so e2πi
α
N k = 1 for all integers k, and

N−1∑
k=0

e2πi
α
N k =

N−1∑
k=0

(1) = N

Summarizing,
N−1∑
k=0

e2πi
α
N k =

{
0 if α ̸≡ 0 (mod N)

N if α ≡ 0 (mod N)
(3)

Now,

x̃n =

N−1∑
k=0

Xke
2πi n

N k =

N−1∑
k=0

(
1

N

N−1∑
m=0

xme−2πi k
N m

)
e2πi

n
N k =

1

N

N−1∑
m=0

N−1∑
k=0

xme2πi
n−m

N k (∗)

=
1

N

N−1∑
m=0

xm

(
N−1∑
k=0

e2πi
n−m

N k

)
=

1

N
(xn ·N) = xn (∗∗)

where the sums can be interchanged at (*) because they are finite, and where (**) comes from applying (3)
to α = n−m such that n−m ≡ 0 (mod N) if and only if n = m (since 0 ≤ n,m ≤ N − 1).

1

We took our original sequence xn and transformed it to Xk, just to get back to our original sequence again.
What does that tell us? It means we can express each xn in an arbitrary sequence of N complex numbers as
a linear combination of the basis “vectors” ωm = e2πi

m
N for m ∈ [0, N − 1]. These ωm are just the N roots

of unity, and if we use Euler’s formula

ωm = cos(2πm/N) + i sin(2πm/N)

we can interpret ωm as having some “frequency” proportional to m, with respect to rotating about the unit
disk ∂D on the complex plane. Then, the DFT as defined in (1) “projects” an input sequence onto the space
generated by the ωm, and the IDFT in (2) defines where the original sequence lies in this space.

In signal processing, we commonly treat xn as a discrete sequence of signals over time — then, the DFT is
said to tranform the time domain to the frequency domain. This interpretation is solidifed visually when we
make epicycles in later sections.

One very useful property of transforming the “space” on which we think of sequences is how operations
change — in particular, convolutions. We will come back to this in a later section. Another feature is that
it allows us to bridge from discrete sequences to something continuous...

2.1 Generalizing to Continuous

Recall Fourier series: given some T -periodic function f(t), we have

ck =
1

T

∫ T

0

f(t)e−2πi k
T tdt, f(t) ∼

∞∑
k=−∞

cke
2πi k

T t (4)

where (as a well-known theorem) the series converges pointwise to f(t) when f(t) is continuous and piecewise
smooth.

Now let’s try to relate (4) with the DFT/IDFT defined earlier. One way would be to convert (4) to the
DFT/IDFT by forcing f(t) into a discrete signal. Given a sequence {xn}N−1

n=0 , we can define a function
f : [−0.5, N − 0.5] → C to be N -periodic (the −0.5 is a minor technical detail) such that

f(t) = x0δ(t− 0) + x1δ(t− 1) + · · ·+ xN−1δ(x− (N − 1)) =

N−1∑
n=0

xnδ(t− n)

where δ(t− a) is the Dirac delta function, a generalized function that is 0 everywhere but at t = a, defined
by the property that ∫

I

g(t)δ(t− a)dt =

{
g(a) if interval I includes a in its interior

0 otherwise

for arbitrary continuous functions g. We write f in this way so then

ck =
1

N

∫ N

0

(
N−1∑
n=0

xnδ(t− n)

)
e−2πi k

N tdt =
1

N

N−1∑
n=0

xn

∫ N

0

e−2πi k
N tδ(t− n)dt =

1

N

N−1∑
n=0

xne
−2πi k

N n = Xk

where we exactly get the formula for the DFT Xk as in (1) for 0 ≤ k ≤ N − 1. If we truncate the series in
(4) to just be these k values, we also recover exactly the IDFT.

This argument suggests that the DFT/IDFT are part of a more fundamental Fourier series phenomenon.
But more relevant to our eventual epicycles is going backwards, from a discrete sequence to a Fourier series
that converges to a nice curve that goes through the points of the sequence. More precisely, we take the
IDFT in (2) and modify it as follows:

xn =

N−1∑
k=0

Xke
2πi n

N k −→ g(t) :=

N−1∑
k=0

Xke
2πi k

N t, t ∈ [0, N] (5)

2

This defines a C∞ function g(t) that is N -periodic (since each exponential in the sum is N -periodic with
respect to t), such that g(t) that still goes through all the original sequence points xn whenever t = n by
Theorem 1. But how does g(t) behave in between the sequence points? Does it nicely “interpolate” between
the sequence points, whatever that means? We will explore this, but first, we must dive into epicycles.

3 Epicycle Drawings

To visually represent the DFT/IDFT, we treat C ∼= R2 such that the input sequence {xn}N−1
n=0 is a sequence

of N points on a 2D plane. Afterwards, we compute the DFT {Xk}N−1
k=0 as before, but then we take the

“continuous” IDFT g(t) as defined in (5).

Consider each term in g(t). Rewrite Xk = rke
iϕk , where rk, ϕk are fixed with respect to t. Then each term

becomes

Xke
2πi k

N t = rke
i(2π k

N t+ϕk) = rk cos

(
2π

k

N
t+ ϕk

)
+ i rk sin

(
2π

k

N
t+ ϕk

)
Identifying the real and imaginary components as x and y components of a 2D Cartesian plane, we see that
as t changes, Xke

2πi k
N t moves around in a circle of radius r, with angular frequency 2π k

N and an added
phase ϕ. Call this circular path the kth term traces out the kth epicycle.

Then, as g(t) is a sum of N terms, visualizing complex addition as 2D vector addition, the effect is simply
chaining up the epicycles, such that the kth epicycle revolves around the (k − 1)th epicycle at the (k − 1)th

frequency. Further, since addition is commutative, we can reorder the chain of epicycles in order of largest
to smallest radius. Visually, in the demonstration I coded (based off of Shiffman [2019]), we get

Figure 1: Epicycle drawings of a circle-shaped and a lemniscate-shaped input sequence. The red dots constitute
the input sequence, the white lines and circles represent the epicycles and their current rotation, and the
magenta path traces out the curve g(t). The origin is at the center.

We can make a few observations from Figure 1. One is that the magenta path indeed passes through every
input point, in order — as it should, since g(n) = xn by Theorem 1. Another is that g(t) is indeed periodic
— although it is not shown in Figure 1, the magenta path eventually traces back to where it started, and
repeats the same path. This also directly comes from the formula for g(t).

Most strikingly, though, the magenta path seems to take a loopy vacation between each xn. This effect is
most pronounced when the orientation of the input sequence is negative, i.e. clockwise (about the origin),
as seen in the lemniscate-shaped input sequence in Figure 1. Why is this so?

Looking at the terms of g(t), we note that the (N − 1)th term has angular frequency 2πN−1
N , which is very

close to 2π. Hence, as t changes from one integer n to another integer n+ 1, where the curve must go from
xn to xn+1, the (N −1)th epicycle almost completes a full circle (counterclockwise). Combined with the fact
that all other terms in g(t) have nonnegative frequency, we conclude that no other epicycle’s motion
can cancel that of the (N − 1)th epicycle, so almost a full circle is made between each xn.

3

To see why the effect is more exaggerated in negative orientation input sequences, we can show that the
modulus of XN−1 (the radius of the (N − 1)th epicycle) becomes large. Suppose, in the extreme case, that
xn defines a perfect clockwise circle about the origin, i.e. xn = Re−2πi n

N +iφ for some radius R and phase φ.
Looking at the DFT definition for XN−1, we have

XN−1 =
1

N

N−1∑
n=0

Re−2πi n
N +iφe−2πiN−1

N n =
Reiφ

N

N−1∑
n=0

e−2πiN
N n =

Reiφ

N

N−1∑
n=0

����:1
e−2πin = Reiφ

N

N
= Reiφ

Taking the modulus, we get that |XN−1| = R, meaning the radius of the epicycle responsible for spinning
(almost) a full circle between each term is the radius of the entire input sequence! The underlying mathemat-
ical mechanism is that in the projection of xn onto its DFT, the frequency components of xn add together
constructively — such that even if the sequence {xn} was perturbed from the perfect clockwise circle, the
product xne

−2πi n
N (N−1) would still be close to 1 (after factoring out a constant phase offset term), thus

producing a spin-ny epicycle with a large |XN−1| radius.

3.1 Can We Do Better?

What we want is for the magenta path to interpolate “nicely” between sequence points. We can state this
problem in a more formal context: suppose the sequence {xn} are sampled points of an T -periodic smooth
curve f(t) : R → C (say, at regular t intervals). We want some epicycle approximation g̃(t) (similar to that
defined in (5)) to be as close to f(t) as possible, preferably in a uniform manner.

To quantify this, we first define the L2 norm over the interval [0, T] of some function h(t) as

∥h∥ :=

(
1

T

∫ T

0

|h(t)|2dt

)1/2

The L2 norm satisfies the triangle inequality as a consequence of the Cauchy-Schwartz Inequality applied

to the inner product ⟨f1, f2⟩ =
∫ T

0
f1(t)f2(t)dt. If we apply the L2 norm to the difference ∥f − g̃∥, the

result captures the “average” error between the desired curve f(t) and the epicycle approximation curve
g̃(t). Stating error in terms of the L2 norm allows us to use tools like Parceval’s Identity to eventually place
a bound.

There is one last thing to do before bounding the error. We have seen in the previous section that g(t) as
defined in (5) has great error compared to the underlying smooth curve (the circle and the lemniscate). We
can improve the error (provably so, as we shall see) by instead considering

g̃(t) :=

⌊N/2⌋∑
k=−⌈N/2⌉+1

Xke
2πi k

N t, t ∈ [0, N] (6)

The new curve g̃(t) differs from g(t) only in the summation indices, such that g̃(t) now contains both positive
and negative frequency epicycles. However, the fact that g̃(n) = g(n) = xn for all n ∈ {0, . . . , N − 1} still
holds. To see why, we note the identity

Xk =
1

N

N−1∑
n=0

xne
−2πi k

N n =
1

N

N−1∑
n=0

xne
−2πi k

N ne−2πiN =
1

N

N−1∑
n=0

xne
−2πi k+N

N n = Xk+N

holds, and the roots of unity e2πi
k
N t in (6) for negative-k simply wrap around to the corresponding positive-k

root of unity for t = n ∈ {0, . . . , N − 1}, such that each term in the summation of (5) appears exactly once
in the formula of (6), proving their equivalence. For real t in between the integers, g̃(t) can differ greatly
from g(t).

Now we can finally bound the error between g̃ and f , depending on the smoothness of f :

4

Lemma 1. If the Fourier series of the T -periodic function f : [0, T] → C is finite, i.e. we can write

f(t) =

⌊N/2⌋∑
k=−⌈N/2⌉+1

cke
2πi k

T t

for some integer N , then if we sample N points {xn}N−1
n=0 at regular intervals xn = f

(
T
N n
)
, the each item

in the DFT satisfies Xk = ck (for k ∈ {0, . . . , N − 1}). Thus the epicycle approximation g̃(t) as defined in
(6) matches f(t) exactly, with zero error.

Proof. The proof of this is inspired from the proof of the Nyquist-Shannon Sampling Theorem, which is
basically the Fourier transform version of Theorem 2.

We have

xn = f

(
T

N
n

)
=

⌊N/2⌋∑
k=−⌈N/2⌉+1

cke
2πi k

T (
T
N n) =

⌊N/2⌋∑
k=−⌈N/2⌉+1

cke
2πi k

N n

Substituting this into the definition of the DFT, for k from −⌈N/2⌉+ 1 to ⌊N/2⌋, we have

Xk =
1

N

N−1∑
n=0

xne
−2πi k

N n =
1

N

N−1∑
n=0

 ⌊N/2⌋∑
m=−⌈N/2⌉+1

cme2πi
n
N m

 e−2πi k
N n =

⌊N/2⌋∑
m=−⌈N/2⌉+1

cm

(
1

N

N−1∑
n=0

e2πi
m−k
N n

)

=

⌊N/2⌋∑
m=−⌈N/2⌉+1

cm

({
0 if m ̸≡ k (mod N)

1 if m ≡ k (mod N)

)
= ck

Remark: In signal processing, if we try to reconstruct a signal f(t) using only samples of f(t) at different
times, if the reconstruction differs from the original, we call it “aliasing”. In Lemma 1, under the assumptions
of f , we showed that there is no sampling or “aliasing” error.

Using this lemma, we are ready to prove the main theorem.

Theorem 2. Given a T -periodic, continuous, and piecewise smooth f : [0, T] → C such that f ∈ Cm (with
m ≥ 1), if we sampled f at N points at regular intervals xn = f

(
T
N n
)
, then after constructing g̃(t) using

these samples according to (6), we can bound

∥f − g̃∥ = O(N−m+1/2) as N → ∞

Proof. The assumptions of f imply it has a convergent Fourier series

f(t) =

∞∑
k=−∞

cke
2πi k

T t

But to apply our lemma, we must truncate this series. When a function has a finite number of Fourier
frequency components we say it is “bandlimited” — in this case, we define the bandlimited function

f̃(t) :=

⌊N/2⌋∑
k=−⌈N/2⌉+1

cke
2πi k

T t

Comparing with f under the L2 norm and applying the triangle inequality, we have

∥f − g̃∥ = ∥(f − f̃) + (f̃ − g̃)∥ ≤ ∥f − f̃∥︸ ︷︷ ︸
truncation error

+ ∥f̃ − g̃∥︸ ︷︷ ︸
sampling error

5

By Lemma 1, we get zero sampling error: ∥f̃ − g̃∥ = 0. For the truncation error, we first explicitly write out
f − f̃ , calling the difference a new function h : [0, T] → C:

h(t) := f(t)− f̃(t) =

∞∑
k=−∞

cke
2πi k

T t −
⌊N/2⌋∑

k=−⌈N/2⌉+1

cke
2πi k

T t =
∑

k≤−⌈N/2⌉,k>⌊N/2⌋

cke
2πi k

T t (7)

By the linearity of Fourier series, since h is a linear combination of f and f̃ , we know the Fourier series of h
is a linear combination of the Fourier series of f and f̂ , which is given by the right-hand-side in (7). Thus h
represents all the higher-magnitude frequencies that constitute f — the Fourier coefficients of h are 0 for a
finite range of frequencies near 0, and ck outside this range (as given in (7)). Using Parceval’s Identity, we
know the L2 norm of h over [0, T] satisfies

∥h∥2 =
∑

k≤−⌈N/2⌉,k>⌊N/2⌋

|ck|2

Now f ∈ Cm, and f̂ ∈ C∞, so h ∈ Cm, meaning the Fourier coefficients of h, which are ck (for large |k|)
decay on the order of k−m as k → ∞. In other words, there is a constant C such that

|ck| ≤
C

|k|m
=⇒

∑
k≤−⌈N/2⌉,k>⌊N/2⌋

|ck|2 ≤ 2C2
∑

k≥⌊N/2⌋

k−2m

The series on the right is nonnegative and decreasing (with m ≥ 1), so it is comparable to the integral

2C2
∑

k≥⌊N/2⌋

k−2m ≤ C ′
∫ ∞

N/2

x−2mdx = C ′ x
−2m+1

−2m+ 1

∣∣∣∣∞
N/2

= −C ′ (N/2)−2m+1

−2m+ 1

=
C ′

(2m+ 1) · 2−2m+1
N−2m+1 = O(N−2m+1)

Thus
∥f − g̃∥ ≤ ∥h∥ ≤ [O(N−2m+1)]1/2 = O(N−m+1/2)

We proved the theorem, but what does it all mean? First, it suggests that we should draw epicycles based
on g̃(t) instead of g(t), including negative and positive frequency epicycles. This makes intuitive sense —
the epicycle approximation is more suited to handle positively and negatively oriented input sequences, and
epicycles that revolve in opposite directions (with positive and negative frequencies) can cancel out erratic
spin-ny behavior.

If we use g̃(t) to make epicycle drawings, then Theorem 2 tells us that the smoother the underlying curve
the input sequence is sampled from, the closer the epicycle drawing will match. Theorem 2 also justifies the
intuition that the more points are sampled (the greater the N), the better the reconstructed curve is.

In the demonstration I coded, we can clearly see Theorem 2 in action:

Figure 2: On the left, the lemniscate is drawn with smooth interpolation in between the points, in contrast
to Figure 1. On the right, the epicycle curve is still relatively smooth, but fails to interpolate nicely near the
bottom, where the input sequence is irregular and has a “jump discontinuity”.

6

3.2 Epicycle Transformations and Convolution

With a working epicycle drawer, we can explore key properties of the DFT/IDFT by visually representing
them through epicycles. For example, the k = 0 epicycle never turns since its angular frequency is 0, and
acts as the central pivot of the entire epicycle drawing. Hence if we translated the entire input sequence
by some constant reiθ, we expect that only the k = 0 epicycle moves by reiθ, while all the other epicycles
remain the same. This is easily proved: compared to the old DFT {Xk}, the new DFT {X̃k} is

X̃k =
1

N

N−1∑
n=0

(xn + reiθ)e−2πi k
N n = Xk + reiθ

1

N

N−1∑
n=0

e−2πi k
N n = Xk + reiθδk0

where δk0 denotes the Kronecker delta that is 1 if k = 0 and 0 otherwise. But this illuminates a more general
fact about the linearity of the DFT: if the input sequence is a linear combination xn = αan + βbn, the DFT
is

Xk =
1

N

N−1∑
n=0

(αan + βbn)e
−2πi k

N n = α
1

N

N−1∑
n=0

ane
−2πi k

N n + β
1

N

N−1∑
n=0

bne
−2πi k

N n = αAk + βBk (8)

where {Ak}, {Bk} are the DFT of {an}, {bn}, respectively.
Remark: as long as we show the DFT of two sequences are equal for k from 0 to N − 1, then their epicycle
drawings must be equivalent even though we use negative k in the definition of g̃(t) in (6), since Xk = Xk+N

as shown earlier.

Another transformation we could perform is scaling. If we doubled the modulus of every xn, we expect the
radii of every epicycle to double — a quick look at the DFT formula confirms this. But what if we wanted
to perform a more general “scaling” operation: given input sequences {an}N−1

n=0 and {bn}N−1
n=0 , we define

xn := (a ∗ b)n =

N−1∑
m=0

ambn−m mod N (9)

We call (9) a convolution of the sequences {an} and {bn}. To construct xn, we take bn and scale it by a0
— then add on bn−1 scaled by a1, then bn−2 scaled by b0, and so on. This can be interpreted as a weighted
average of bn using weights am, and it generalizes many important operations used in signal processing.
Audio effects like gain and delay are specially designed convolutions of audio signals; image filters (like
blurring) is just a weighted average of the colors around each pixel, i.e. a 2D convolution. Some neural
network architectures are even specifically designed to train a convolution filter. Convolution is even at the
heart of polynomial multiplication:(

N−1∑
n=0

amxm

)(
N−1∑
m=0

bnx
n

)
=

N−1∑
n=0

N−1∑
m=0

ambnx
m+n =

N−1∑
n=0

N−1∑
m=0

amb(m+n)−mxm+n

If we define a new index n′ = m + n and rearrange the sum, we can identify the new inner sum as just a
convolution of the coefficients of the original polynomial. The details are not important in this paper.

What we are actually interested in is how epicycles can represent a convolution, as to gain a new perspective
to what is actually happening in a convolution. For that, we need an important theorem, based off of McFee
[2023]:

Theorem 3 (Convolution). Let {an}, {bn} both be sequences of N complex numbers. Define x = a∗b. Then

Xk = Ak ·Bk

7

Proof. We first compute

Xk =
1

N

N−1∑
n=0

xne
−2πi k

N n =
1

N

N−1∑
n=0

(
N−1∑
m=0

ambn−m mod N

)
e−2πi k

N n =

N−1∑
m=0

am

(
1

N

N−1∑
n=0

bn−m mod Ne−2πi k
N n

)

For the inner sum, we can get rid of the mod by “shifting”: multiply by e2πi
k
N m and break up the summation

to get

e2πi
k
N m · 1

N

N−1∑
n=0

bn−m mod Ne−2πi k
N n =

1

N

(
m−1∑
n=0

+

N−1∑
n=m

)
bn−m mod Ne−2πi k

N (n−m)

=
1

N

(
m−1∑
n=0

bn−m+Ne−2πi k
N (n−m+N) +

N−m−1∑
n′=0

bn′e−2πi k
N n′

)
(∗)

=
1

N

(
N−1∑

n′=N−m

bn′e−2πi k
N n′

+

N−m−1∑
n′=0

bn′e−2πi k
N n′

)
=

1

N

N−1∑
n′=0

bn′e−2πi k
N n′

= Bk (∗∗)

where we changed indices to n′ = n−m in (*) and to n′ = n−m+N along with the 2πi-periodicity of the

exponential e−2πi k
N in (**). Returning to Xk, we have

Xk =

N−1∑
m=0

am

(
e−2πi k

N mBk

)
= Bk

N−1∑
m=0

ame−2πi k
N m = Bk ·Ak

We can see convolution in action using epicycles:

Figure 3: Convolutions of a heart-shaped sequence (red) with the “filter” sequence (blue), which is a circle
around the origin on the left and a vertical line on the right. The result is the magenta curve, a transformation
of the original heart. It is left as an exercise to the reader to figure out why the convolutions produce the
illustrated results :)

8

4 Fast Fourier Transform

One final important detail with regards to the DFT is how efficiently we can compute it. Looking at the
definition in (1), to compute each Xk it takes N “operations” (an operation here just means a single addition
or multiplication of two complex numbers), so to compute the entire {Xk} sequence it takes N2 operations,
which is far too slow by computer science standards.

However, we can do better, using an algorithm introduced by Cooley and Turkey. Without loss of generality,
take N = 2K to be some power of 2 (otherwise add 0s to the input sequence — this will not change the time
complexity, as we will see later). Then, decompose the DFT formula into a sum over even indices and a sum
over odd indices:

Xk =

N−1∑
n=0

xne
−2πi k

N n =

N/2−1∑
n′=0

x2n′e−2πi k
N (2n′)

︸ ︷︷ ︸
Even indices

+

N/2−1∑
n′=0

x2n′+1e
−2πi k

N (2n′+1)

︸ ︷︷ ︸
Odd indices

Now let xE
n′ = x2n′ be the even subsequence of {xn} and xO

n′ = x2n′+1 the odd subsequence, and XE
k , XO

k

be their DFTs. Examining the even part of Xk, we have

N/2−1∑
n′=0

x2n′e−2πi k
N (2n′) =

N/2−1∑
n′=0

xE
n′e

−2πi k
N/2

n′
= XE

k

while the odd part is

N/2−1∑
n′=0

x2n′+1e
−2πi k

N (2n′+1) = e−2πi k
N

N/2−1∑
n′=0

xO
n′e

−2πi k
N/2

n′
= e−2πi k

N XO
k

Combined, they give

Xk = XE
k + e−2πi k

N XO
k (10)

Remark: For k ≥ N/2, the DFT components XE
k , XO

k wrap around modulo N/2 by periodicity of the
definition of the DFT. It would be more accurate to write k mod N/2 in (10) but we skip that technical
detail.

How does (10) speed up computation? If we wanted to compute Xk for a fixed k, (10) would not change the
number of operations. However, if we used (10) to recursively compute the entire DFT sequence {Xk}, we
will get a speed-up. To see why, let T (N) be the number of operations it takes to compute a DFT sequence
from some length N input sequence. Exploiting (10), we first use T (N/2) operations to compute {XE

k }
and another T (N/2) + 1 operations to compute {XO

k } (the extra 1 for the e−2πi k
N factor). Then, iterating

through all k (N additional computations), we can complete the computation for {Xk}. Thus we have the
recurrence

T (N) = T

(
N

2

)
+ 1 + T

(
N

2

)
+N ≤ 2T

(
N

2

)
+ CN

for a constant C. We also have the base case T (1) = 1 since the DFT of a single number is just itself. It
remains to find an explicit formula for T (n) — we do so by counting the total number of operations per
recursive “level”. At the first level, we start with N , complete CN operations, and then use T (N/2) twice.
At the second level, we complete C(N/2) operations (twice), totaling CN operations, and call T (N/4) four
times. Repeating, we have log2 N recursive levels, each with CN total operations, so

T (n) ≤
log2 N∑
n=1

CN = CN log2 N = O(N logN)

which performs significantly better than O(N2), asymptotically.

The same logic applies here to give a fast O(N logN) IDFT algorithm. These constitute the “fast Fourier
transform”, which not only speeds up epicycle drawing computations, but also (by the convolution theorem)

9

dramatically speeds up computations of convolutions of sequences. This makes applying filters to audio and
images, as well as training convolutional neural networks, a lot faster than doing it the naive way — making
the fast Fourier transform a groundbreaking discovery.

5 Conclusion

Overall, epicycles provide a great way to visualize the discrete Fourier transform of an input sequence,
and they are especially effective at approximating the underlying smooth curve (as proven). The epicycle
representation also provides a new perspective of understanding how sequences of points transform under
operations like convolutions.

Of course, the real star of the show is the discrete Fourier transform itself, allowing us to change from the
time domain to the frequency domain. The main sidekick is the fast Fourier transform algorithm, that
makes everything in this paper very practical from a computational perspective, readily used in all sorts of
industries.

There are also many extensions. Epicycles can be used to visualize audio filters, image filters, polynomial
multiplication, and pretty much anything to do with convolution. Or, epicycles can be bumped up to higher
dimensions. I even read a crazy paper from Birmanns [2022] where quaternions were used in place of complex
numbers to define a 4-dimensional DFT/IDFT, that allows representing a sequence of points in 3D/4D using
quaternion-based epicycles.

References
Jan Philipp Birmanns. Creating multidimensional drawings with epicycles, 2022. URL https://www.

maturitaetsarbeiten.ch/cms/images/2022/Birmanns_Jan/MP_JanBirmanns_final.pdf.

Brian McFee. Digital Signals Theory. CRC Press, 2023. URL https://brianmcfee.net/dstbook-site.

Daniel Shiffman. Challenge #130: Drawing with fourier transform and epicycles, 2019. URL https:

//thecodingtrain.com/challenges/130-drawing-with-fourier-transform-and-epicycles.

Appendix

The demonstration I coded is available at https://editor.p5js.org/XYuchen/sketches/BKDlBvRLK.

10

https://www.maturitaetsarbeiten.ch/cms/images/2022/Birmanns_Jan/MP_JanBirmanns_final.pdf
https://www.maturitaetsarbeiten.ch/cms/images/2022/Birmanns_Jan/MP_JanBirmanns_final.pdf
https://brianmcfee.net/dstbook-site
https://thecodingtrain.com/challenges/130-drawing-with-fourier-transform-and-epicycles
https://thecodingtrain.com/challenges/130-drawing-with-fourier-transform-and-epicycles

	Introduction
	The Discrete Fourier Transform
	Generalizing to Continuous

	Epicycle Drawings
	Can We Do Better?
	Epicycle Transformations and Convolution

	Fast Fourier Transform
	Conclusion

