
≫ We visually represent the problem using the diagram:

≫ After rewriting the Schröginer equation as follows

and assuming the amplitude of the wavefunction varies slowly, we get

which is valid away from turning points (where                      ).

≫ We want to find the coefficients               or               for each region    . 
Using                                  ,                        , and                                  , 
asymptotic analysis connects coefficients across turning points using

≫ Periodicity requires                                       , creating the “quantization 
condition” which describe the energy values of the states and shows 
energy splitting caused by the flea.

≫ Using this, we get formulas for the wavefunction in each region that 
can be analyzed/compared in the limit                         .

≫ Attempt to generalize two-well systems to arbitrary numbers of 
wells, representing the measurement of a discrete n-state system.

≫ We use following periodic well potential
and apply the periodic boundary condition:                             we 
analyze the lowest n energy eigenstates each with energy

≫ Goal: By adding a small, local flea perturbation              to one well 
of the potential, can we prove the wavefunction localizes (to the 
other wells)? Using previous results, this suffices to prove that 
Landsman’s flea model leads to measurement results following 
Born’s rule.

≫ Directly analyzing the Hamiltonian of the system proves to be very 
challenging. Instead, we rely on the WKB approximation.

Remodeling Quantum Measurement

Periodic Well WKB
Our project is a continuation of Landsman’s Flea model as a 
potential solution to resolve the measurement problem in 
quantum mechanics. We aim to generalize Landsman’s Flea 
model to different systems, such as periodic potentials and 
2-dimensional potentials. In doing so, we also investigate new 
mathematical tools to understand the effects of the flea.
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Abstract

The Measurement Problem
In quantum mechanics, the properties of a particle (e.g. position, energy) 
is generally described by a distribution called the wavefunction. A 
wavefunction, a superposition (linear combination) of many eigenstates, 
evolves according to Schrödinger’s equation, a deterministic process. 
However, when the particle is measured, the wavefunction “collapses” 
into one of its eigenstates in a probabilistic way.

WKB Approximation

The Born rule, a postulate in quantum mechanics, tells us the probability 
of measuring some eigenstate       is given by the square modulus of the 
“amplitude” of        in the wavefunction:

Measurement

Landsman’s Flea
Our work is largely inspired by ‘A Flea on Schrodinger’s Cat’ - Landsman & 
Reuvers, in which the measurement process of a discrete 2-state quantum 
system is modeled by a small perturbation (flea) on a double well in the 
limits of                         and                        . Localization of the lowest two 
energy eigenstates into separate wells was shown in the classical limit.

Ground state with no flea, localizes into degenerate 
classical states (both wells) in the classical limit.

Ground state with flea, localizes into non-degenerate 
classical states (one well) in the classical limit.

Averaging over possible flea positions, we “re-derive” the Born rule.

2D Well
≫ We studied a mathematical tool analogous to that of the Wigner 

Function for aiding in understanding our classical phase space 
under specific potential conditions. 

≫ The Husimi (or Q) Function is defined as                                                 
which is the expectation of the coherent state projector. This 
characterizes a pseudo-probability distribution of position, q, and 
momentum, p, for our quantum state described by rho.

≫ To make use of this in our work, we need to understand the 
dynamics, or time derivative, of this function.

≫ Goal: Our work this quarter was to verify the claim by Drummond 
that the dynamics of the Q function follow a diffusion evolution 
represented as a time-symmetric Fokker-Planck equation, and, to 
further explore under which conditions can  we convert this to a 
forward in time diffusion. 

Husimi Function
≫ We hope to generalize the two-well system results to a 2D system 

called the “hat potential,” which has a continuous circle of lowest 
potential positions:

≫ Drummond’s paper claims that diffusion behavior for up to quartic 
hamiltonians. A significant amount of this quarter was dedicated 
to verifying the claim for smaller potentials, such as the harmonic 
oscillator and the free particle.

≫ We began by understanding the generic dynamic form of Q, 
namely:

≫ And to understand this as diffusion we also characterize how Q 
evolves in terms of q,p:

Free Particle Case
≫ Our analysis makes use of the dynamics of the coherent state 

itself, where we derive:

≫ We prove that by writing these terms into different partials of 
alpha we can derive that all but the third term cancel and give us 
symmetry that models Q as evolving with q. It remains an open 
question of how we prove the second term case.

Generalizing / Next Steps
≫ We can generalize this to the double well potential and the 

quantum harmonic oscillator, assuming the free particle case to:

Diffusion Computations

≫ From computer simulations, it looks like adding a flea to this 
system does give convergence to a point in the                  limit. 

≫ The proof of the 2-well case relies on working with approximately 
localized eigenstates centered in each well.

≫ For the 2D version, we need to construct a state that’s localized at 
a single point within the bottom circle of the potential. 

≫ This isn’t as easy as the 2-well case because we need an infinite 
sum of eigenstates to get localization at a single point. We hope to 
approximate the approximately localized state with finite sums:

≫  C and C* are just a normalizing coefficients. The angular 
component is our approximately localized sum and the radial 
component is just a Gaussian centered at r = 1.

Brighter color corresponds to higher potential energy. Left: hat potential with perturbation circled in red. 
Middle: resulting probability distribution with ℏ = 1. Right: resulting probability distribution with ℏ = 0.2. 

The norm squared of the angular component at N=1, N=2, N=3, and N=5.

≫ 𝜑 converges pointwise to a delta function as N  goes to infinity 
and ℏ goes to 0. Next we need to show that its Wigner function or 
Husimi function also has the convergence we want.


